Floes of Frozen Methane May Be Floating on Titan’s Lakes

Artist's rendering of an ice-covered lake surface on Titan (NASA/JPL-Caltech/USGS)

Artist’s rendering of an ice-covered lake surface on Titan (NASA/JPL-Caltech/USGS)

Although surface temperatures on Titan are cold enough that methane can exist as a liquid, filling lakes and flowing in streams, it may sometimes get so cold that even the liquid methane and ethane freezes, forming floes and icebergs of frozen hydrocarbons. This Titanic revelation was announced today during the 221st American Astronomical Society meeting in Long Beach, CA.

From the NASA news release:

“One of the most intriguing questions about these lakes and seas is whether they might host an exotic form of life,” said Jonathan Lunine, a paper co-author and Cassini interdisciplinary Titan scientist at Cornell University, Ithaca, N.Y. “And the formation of floating hydrocarbon ice will provide an opportunity for interesting chemistry along the boundary between liquid and solid, a boundary that may have been important in the origin of terrestrial life.”

Titan is the only other body besides Earth in our solar system with stable bodies of liquid on its surface. But while our planet’s cycle of precipitation and evaporation involves water, Titan’s cycle involves hydrocarbons like ethane and methane. Ethane and methane are organic molecules, which scientists think can be building blocks for the more complex chemistry from which life arose. Cassini has seen a vast network of these hydrocarbon seas cover Titan’s northern hemisphere, while a more sporadic set of lakes bejewels the southern hemisphere.

“We now know it’s possible to get methane-and-ethane-rich ice freezing over on Titan in thin blocks that congeal together as it gets colder — similar to what we see with Arctic sea ice at the onset of winter.”

Up to this point, Cassini scientists assumed that Titan lakes would not have floating ice, because solid methane is denser than liquid methane and would sink. But the new model considers the interaction between the lakes and the atmosphere, resulting in different mixtures of compositions, pockets of nitrogen gas, and changes in temperature. The result, scientists found, is that winter ice will float in Titan’s methane-and-ethane-rich lakes and seas if the temperature is below the freezing point of methane — minus 297 degrees Fahrenheit (90.4 kelvins). The scientists realized all the varieties of ice they considered would float if they were composed of at least 5 percent “air,” which is an average composition for young sea ice on Earth. (“Air” on Titan has significantly more nitrogen than Earth air and almost no oxygen.)

If the temperature drops by just a few degrees, the ice will sink because of the relative proportions of nitrogen gas in the liquid versus the solid. Temperatures close to the freezing point of methane could lead to both floating and sinking ice – that is, a hydrocarbon ice crust above the liquid and blocks of hydrocarbon ice on the bottom of the lake bed. Scientists haven’t entirely figured out what color the ice would be, though they suspect it would be colorless, as it is on Earth, perhaps tinted reddish-brown from Titan’s atmosphere.

“We now know it’s possible to get methane-and-ethane-rich ice freezing over on Titan in thin blocks that congeal together as it gets colder — similar to what we see with Arctic sea ice at the onset of winter,” said Jason Hofgartner, first author on the paper and a Natural Sciences and Engineering Research Council of Canada scholar at Cornell. “We’ll want to take these conditions into consideration if we ever decide to explore the Titan surface some day.”

Cassini radar image of lakes on Titan's surface (NASA/JPL-Caltech/ASI/Cornell)

Cassini radar image of lakes on Titan’s surface (NASA/JPL-Caltech/ASI/Cornell)

Cassini’s radar instrument will be able to test this model by watching what happens to the reflectivity of the surface of these lakes and seas. A hydrocarbon lake warming in the early spring thaw, as the northern lakes of Titan have begun to do, may become more reflective as ice rises to the surface. This would provide a rougher surface quality that reflects more radio energy back to Cassini, making it look brighter. As the weather turns warmer and the ice melts, the lake surface will be pure liquid, and will appear to the Cassini radar to darken.

About these ads

About JPMajor

Desktop astronomer, graphic designer and space news nut.

Posted on January 8, 2013, in Saturn's Moons and tagged , , , , , , , , . Bookmark the permalink. 4 Comments.

  1. More time goes by and more Titan looks like by his complexity our Earth. An earth where the methane replaced the water…
    It’s really awesome !!
    Jeff Barani from Vence (France)

    Like

  2. “Floes”? You mean “Flows”…

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 15,418 other followers

%d bloggers like this: